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Abstract Given a convex polyhedroi of n vertices inside a Lemma 2. The D-separation can be found @(n) time.
sphere@, we give anO(n?)-time algorithm that cuts® out of Q
by using guillotine cuts and has cutting c@¥log? n) times the op-
timal.

1. Introduction Lemma 3. For corneredP, cost of the D-separation, which is

The problem of cutting a convex polygdh out of a piece of mr?, is at mostC*.

planar materiat) (P is already drawn o)) with minimum

total cutting length is a well studied problem in computationaPToof. [Sketch only] The proof depends upon the fact that the
geometry. The problem was first introduced by Overmars arf@ts in an optimal cutting sequence must be tangents.to
Welzl in 1985 [10] but has been extensively studied in the la§?vermars and Welzl [10] proved this fact for 2D, whose 3D
e|ght years [1, 21 4_8, 10_12] with several VariationS, such wnel’allzatlon also holds. The idea is that i§ the first cut

P andQ are convex or hon-convex po|ygor@, is a circle, that does not tOU'CIP, then the cost of and the Subsequ'ent
and the cuts are line cuts or ray cuts. The results include: ifUts behaves, while movingparallelly, as a concave function
dication to the hardness of optimality, seve€allogn) and in the distance of from P. Therefore, the minimum cost is
constant factor approximation algorithms and a PTAS. See [#Fhieved when it touches or is infinitely away fromP. With

for a summary of these results. the above fact,.the auth_ors in [1] proved in 2D that to separate

The generalization of this problem in 3D is very little P fromoan optimal cutting sequnce must use the D-separation
known. To the best of our knowledge, the only result is to deQr use cuts with cost higher than the D-separation. The 3D gen-
cide whether a polyhedral object can be cut out form a largéfalization of this proof also holds. [
block using continuous hot wire cuts [8].

This type of cutting problems have many industrial appli-
cations such as in metal sheet cutting, paper cutting, furniturt@mma 4. For centeredP, C* > 7 R2, whereR is the radius
manufacturing, ceramic industries, fabrication, ornaments, aggl ().
leather industries. Some of their variations also fall ursteck ) . )
cutting problemg4]. We next find a minimum volume rectangular bounding box

In this paper we consider the problem of cutting a conve® of P in O(n?) time by the algorithm of O’'Rourke [9]. Then
polyhedronP which is fixed inside a spher@ by using only ~We cut out this box fron®) by applying six cuts along the six
guillotine cuts with minimum total cutting cost. guillotine faces ofB.
cut, or simply acut, is a plane that does not pass through
and partitiong into two smaller convex pieces. After a cut is
applied,@ is updated to the piece that contaiis Thecutting
costof a guillotine cut is the area of the newly created face dProof. [Sketch only] LetS be the surface of). For cornered
Q. We give anO(n?)-time algorithm that cutd® out of Q by P, area|| = 3712 < 3C* (by Lemma 3) and for centeref,
using only guillotine cuts and has cutting cost no more thays| = 4rR? < 4C* (by Lemma 4). While cutting along the

For corneredP, after the D-separation is applied) is a
spherical segment and lebe the radius of its base circle.

A similar lemma for centere@ also holds.

Lemma 5. Cost of cuttingB out of @ is at mosB3C* for cor-
neredP and at mosttC* for centeredP.

O(log? n) times the optimal cutting cost. faces ofB, for each cut: let Q' be the portion of) that does
. not containP. Let ¢’ be the portion of the surface 6§’ that
2. Algorlthm is “inherited” from .S. One important observation is that the

The overall idea is as follows. L&t* be the optimal cutting cost ofc is no more than the area gf. Moreover, over all six
cost. We shall have two phases in our algoritisox cutting cuts, sum of these inherited surface aregsis Therefore, the
phaseandcarving phase In the box cutting phase, we shall lemma holds. O
cut a minimum volume rectangular bdxcontainingP out of _
Q with cutting cost no more than a constant facto€tt Then Lemma6. C* > 1| B, where| B is the area ofB.
in the carving phase we shall citout of B with cutting cost
bounded byO(log? n) times of C'*.

A cut is vertex/edge/face cut it is tangent toP at a ver-
tex/edge/face respectively. We callto becorneredif it does
not contain the center of @, otherwise it is calleadentered

Proof. [Sketch only] Letg be a maximum area face d3.
Project P orthogonally from the direction perpendiculargo

P projects to a convex polygoX. Observe that in this pro-
jection, g is the minimum area bounding rectangleXf since

: X e otherwise we could rotate the four facesi®that are not per-
For cornered?, the D-separationof P is the minimum-cost hengicylar tog and would get a bounding rectangle smaller
(single) cut that separat@sfrom o. A pointp of Pisvisible  ihan ) \which in turn would give a bounding box smaller than
from o if the line segmentp does not intersect any other point ¢ implies that the area ok is at leastl|g|. Now, C*

of . ] is at least twice the area of, and|B| < 3|g|. Therefore,
2.1 Box cutting phase c* > 4B O
If Pis cornered, we first apply a D-separatiornio .

, , 2.2 Carving phase
Lemma 1. The D-separation must be either a vertex, edge YetT — B — P be the portion of3 that is “trapped” between

face cut. Moreover, 'b,o/ IS the/ line segment perpendmglar the boundaries of and B. T is a polyhedral object, convex

to the D-separation ab', theno’ must be the corresponding or non-convex and possibly disconnected. Tinger (outen
vertex or a point of the corresponding edge or face. surface ofT" is the surface that touches (does not touch) the
Proof. Let x be the closest point oP from o. Clearly,z is faces ofP. Our idea is to apply an edge cut through each edge
visible fromo. A D-separation must be the plane that can semf P, and we shall do that in two types of roundace rounds
arateo from x and is furthest fronv. This plane is none but andedge roundsFace rounds will find polygonal chains that
the plane perpendicular @& atx. This plane is also tangent will partition the faces ofP into smaller connected compo-

to P, since otherwise would not be closest to. [0 nents and edge rounds will apply edge cuts through the edges



of those polygonal chains. There will i§log n) face rounds. Observe thatB, | + |Bs| < |B|. Box area of any subsequent
Within each face round there will be a number of edge roundace set is similarly defined. Moreover, two face sets from the
but their total cost will beD(C* log n). Once we have applied same face round have their box areas disjoint and in any face
edge cuts through all the edges Bf each facef of P will  round sum of all box area is at mg€®|.

have a small “cap™like portion of” over it, which we shall | syma 9. Let P/, be the separating chain withedges of an
cut at a cost of the area g¢fto getP, giving a cost of0(C”)  gpjtrary face set), to which we apply)(log k) edge rounds.
for all faces. Let B,, be the box area of},,. At each edge roungl total cost
Face rounds Let F be aconnected face seff [ faces ofP.  0f 2’ cutsisO(|By,|). Over alllog k edge rounds, total cost is
At the very first face round = 0, F consists of all the faces O(|B|logn).

of P. We find a chain of edgeB’ that will partition /" into  proof. [Sketch only] This proof is similar to that of Lemma 5.
two smaller connected face set$ and £ by the following  Consider a particular edge rourid For each cut the cost of
lemma. (Precise definition of “connected” needs detail discug-is no more than the portion d&,, that is thrown away by.

sion, which we omit in this extended abstract.) Moreover, these cuts are pairwise disjoint. Indeed, they can at
best intersect the cut which is in between them and was applied
in (j — 1)-th round. It implies that the total cost &f cuts is

at most|B,,|. Sincek < n, the second part of the lemma
follows. O

Lemma 7. It is always possible to find i®(llog!) time an
orthogonal projection of? which is non-degenerate w.r.t the
faces ofF" such that the sets of visible and invisible facegof
contain at least L | faces each.

Lemma 10. Let F' be the face set consisting of all facesrof
to which we shall apply)(logn) face rounds. At each face

. . ; . roundi, total cost o2’ zones of cuts i©(| B| logn). Over all
outward normal is uniguely represented by a poin¢,afhich o f ds. the total LB(C* Tog?
we call thenormal pointof f. Each point ofs also repre- (log ) face rounds, the total cos (, og" n). ,
sents an orthogonal projection direction®f So, an orthog- Proof. At each face round, we apply2* zones of cuts t@*
onal projection ofP which is non-degenerate w.r.t the facedace sets. By the previous lemma, for a particular face’sgt
of F is represented by a great circle othat does not pass 0 < m < 2°, cost of the zone of cuts applied to it is at most
through the normal points of the facesof We need one such O(| By logn). Sinceri |B,| < |B|, cost of all zone cuts
great circle satisfying an additional criterion that its two hemi- __.:
spheres contain at leasf | normal points each. There exists' 21 O(|Bp|logn) = O(| B 10%”)' Over allO(logn) face
infinitely many such great circles and one of them can be fourf@unds, the total cost i©(| B|log” n), which by Lemma 6 is
in O(llog 1) time. O O(C*log®n). O

P’ is the chain of edges in the boundary of the above pro- Running time in face roundinvolves finding2' separating
jection whose each edge has both adjacent faces (one is visiBleins, each of siz&, plus applying a zone of cuts to each of
and another is invisible) id". We call P’ a separating chain them. Each separating chain can be foun@ig; log 3;) time
of F. We shall apply edge cuts through the edges”blboy by Lemma 7. Each cut needs to upd@tevhich “can be done”
the edge rounds as described in the next paragraph. In the niexO(n) time assuming thaf) is represented by suitable data
face round + 1, we shall apply Lemma 7 for each & and  structure [3]. It gives that a zone of cuts ne€t(g.- ) time. So,
F;, and shall thus get two separating chains and four connected . L irm? n " )
face sets. We shall repeat the same procedure for each of th&sgPund total time isO(2* (%7 + 3 log 3¢)) = O(n”). Over
four face sets. We shall continue like this until each face s@ll O(logn) rounds, it become®(n? log n).
has only one face. Clearly, we ne€dlogn) face rounds. Theorem 1. Given a convex polyhedrof® fixed inside a
Edge rounds Let P’ = ey, es, . .., ey with its two ends from sphereQ, P can be cut out of) by using only guillotine cuts

¢1 ande;, touching the outer surface @ We shall apply edge in O(n®) time with cutting cosO(log” n) times the optimal,
cuts through the edges &F such that all of them are parallel Wheren is the number of vertices @f.

to a particular direction. Such a direction can be the corre-
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Proof. [Sketch only] For this proof we shall move on to the
surface of an origin-centered spherd-or each fac¢ € I, its



