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Abstract Given a convex polyhedronP of n vertices inside a
sphereQ, we give anO(n3)-time algorithm that cutsP out of Q
by using guillotine cuts and has cutting costO(log2 n) times the op-
timal.

1. Introduction
The problem of cutting a convex polygonP out of a piece of
planar materialQ (P is already drawn onQ) with minimum
total cutting length is a well studied problem in computational
geometry. The problem was first introduced by Overmars and
Welzl in 1985 [10] but has been extensively studied in the last
eight years [1, 2, 4–8, 10–12] with several variations, such as
P andQ are convex or non-convex polygons,Q is a circle,
and the cuts are line cuts or ray cuts. The results include: in-
dication to the hardness of optimality, severalO(log n) and
constant factor approximation algorithms and a PTAS. See [1]
for a summary of these results.

The generalization of this problem in 3D is very little
known. To the best of our knowledge, the only result is to de-
cide whether a polyhedral object can be cut out form a larger
block using continuous hot wire cuts [8].

This type of cutting problems have many industrial appli-
cations such as in metal sheet cutting, paper cutting, furniture
manufacturing, ceramic industries, fabrication, ornaments, and
leather industries. Some of their variations also fall understock
cutting problems[4].

In this paper we consider the problem of cutting a convex
polyhedronP which is fixed inside a sphereQ by using only
guillotine cuts with minimum total cutting cost. Aguillotine
cut, or simply acut, is a plane that does not pass throughP
and partitionsQ into two smaller convex pieces. After a cut is
applied,Q is updated to the piece that containsP . Thecutting
costof a guillotine cut is the area of the newly created face of
Q. We give anO(n3)-time algorithm that cutsP out of Q by
using only guillotine cuts and has cutting cost no more than
O(log2 n) times the optimal cutting cost.

2. Algorithm
The overall idea is as follows. LetC∗ be the optimal cutting
cost. We shall have two phases in our algorithm:box cutting
phaseandcarving phase. In the box cutting phase, we shall
cut a minimum volume rectangular boxB containingP out of
Q with cutting cost no more than a constant factor ofC∗. Then
in the carving phase we shall cutP out of B with cutting cost
bounded byO(log2 n) times ofC∗.

A cut is vertex/edge/face cutif it is tangent toP at a ver-
tex/edge/face respectively. We callP to becorneredif it does
not contain the centero of Q, otherwise it is calledcentered.
For corneredP , the D-separationof P is the minimum-cost
(single) cut that separatesP from o. A point p of P is visible
from o if the line segmentop does not intersect any other point
of P .

2.1 Box cutting phase
If P is cornered, we first apply a D-separation toQ.

Lemma 1. The D-separation must be either a vertex, edge or
face cut. Moreover, ifoo′ is the line segment perpendicular
to the D-separation ato′, theno′ must be the corresponding
vertex or a point of the corresponding edge or face.

Proof. Let x be the closest point ofP from o. Clearly,x is
visible fromo. A D-separation must be the plane that can sep-
arateo from x and is furthest fromo. This plane is none but
the plane perpendicular toox at x. This plane is also tangent
to P , since otherwisex would not be closest too.

Lemma 2. The D-separation can be found inO(n) time.

For corneredP , after the D-separation is applied,Q is a
spherical segment and letr be the radius of its base circle.

Lemma 3. For corneredP , cost of the D-separation, which is
πr2, is at mostC∗.

Proof. [Sketch only] The proof depends upon the fact that the
cuts in an optimal cutting sequence must be tangents toP .
Overmars and Welzl [10] proved this fact for 2D, whose 3D
generalization also holds. The idea is that ifc is the first cut
that does not touchP , then the cost ofc and the subsequent
cuts behaves, while movingc parallelly, as a concave function
in the distance ofc from P . Therefore, the minimum cost is
achieved when it touchesP or is infinitely away fromP . With
the above fact, the authors in [1] proved in 2D that to separate
P from o an optimal cutting sequnce must use the D-separation
or use cuts with cost higher than the D-separation. The 3D gen-
eralization of this proof also holds.

A similar lemma for centeredP also holds.

Lemma 4. For centeredP , C∗ ≥ πR2, whereR is the radius
of Q.

We next find a minimum volume rectangular bounding box
B of P in O(n3) time by the algorithm of O’Rourke [9]. Then
we cut out this box fromQ by applying six cuts along the six
faces ofB.

Lemma 5. Cost of cuttingB out ofQ is at most3C∗ for cor-
neredP and at most4C∗ for centeredP .

Proof. [Sketch only] LetS be the surface ofQ. For cornered
P , area|S| = 3πr2 ≤ 3C∗ (by Lemma 3) and for centeredP ,
|S| = 4πR2 ≤ 4C∗ (by Lemma 4). While cutting along the
faces ofB, for each cutc let Q′ be the portion ofQ that does
not containP . Let q′ be the portion of the surface ofQ′ that
is “inherited” from S. One important observation is that the
cost ofc is no more than the area ofq′. Moreover, over all six
cuts, sum of these inherited surface area is|S|. Therefore, the
lemma holds.

Lemma 6. C∗ ≥ 1
3 |B|, where|B| is the area ofB.

Proof. [Sketch only] Letg be a maximum area face ofB.
ProjectP orthogonally from the direction perpendicular tog.
P projects to a convex polygonX. Observe that in this pro-
jection,g is the minimum area bounding rectangle ofX, since
otherwise we could rotate the four faces ofB that are not per-
pendicular tog and would get a bounding rectangle smaller
thang, which in turn would give a bounding box smaller than
B. It implies that the area ofX is at least12 |g|. Now, C∗

is at least twice the area ofX, and |B| ≤ 3|g|. Therefore,
C∗ ≥ 1

3 |B|.
2.2 Carving phase
Let T = B − P be the portion ofB that is “trapped” between
the boundaries ofP andB. T is a polyhedral object, convex
or non-convex and possibly disconnected. Theinner (outer)
surface ofT is the surface that touches (does not touch) the
faces ofP . Our idea is to apply an edge cut through each edge
of P , and we shall do that in two types of rounds:face rounds
andedge rounds. Face rounds will find polygonal chains that
will partition the faces ofP into smaller connected compo-
nents and edge rounds will apply edge cuts through the edges
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of those polygonal chains. There will beO(log n) face rounds.
Within each face round there will be a number of edge rounds
but their total cost will beO(C∗ log n). Once we have applied
edge cuts through all the edges ofP , each facef of P will
have a small “cap”-like portion ofT over it, which we shall
cut at a cost of the area off to getP , giving a cost ofO(C∗)
for all faces.

Face rounds Let F be aconnected face setof l faces ofP .
At the very first face roundi = 0, F consists of all the faces
of P . We find a chain of edgesP ′ that will partition F into
two smaller connected face setsF1 andF2 by the following
lemma. (Precise definition of “connected” needs detail discus-
sion, which we omit in this extended abstract.)

Lemma 7. It is always possible to find inO(l log l) time an
orthogonal projection ofP which is non-degenerate w.r.t the
faces ofF such that the sets of visible and invisible faces ofF
contain at leastb l

2c faces each.

Proof. [Sketch only] For this proof we shall move on to the
surface of an origin-centered spheres. For each facef ∈ F , its
outward normal is uniquely represented by a point ofs, which
we call thenormal pointof f . Each point ofs also repre-
sents an orthogonal projection direction ofP . So, an orthog-
onal projection ofP which is non-degenerate w.r.t the faces
of F is represented by a great circle ofs that does not pass
through the normal points of the faces ofF . We need one such
great circle satisfying an additional criterion that its two hemi-
spheres contain at leastb l

2c normal points each. There exists
infinitely many such great circles and one of them can be found
in O(l log l) time.

P ′ is the chain of edges in the boundary of the above pro-
jection whose each edge has both adjacent faces (one is visible
and another is invisible) inF . We callP ′ a separating chain
of F . We shall apply edge cuts through the edges ofP ′ by
the edge rounds as described in the next paragraph. In the next
face roundi + 1, we shall apply Lemma 7 for each ofF1 and
F2 and shall thus get two separating chains and four connected
face sets. We shall repeat the same procedure for each of these
four face sets. We shall continue like this until each face set
has only one face. Clearly, we needO(log n) face rounds.

Edge rounds Let P ′ = e1, e2, . . . , ek with its two ends from
e1 andek touching the outer surface ofT . We shall apply edge
cuts through the edges ofP ′ such that all of them are parallel
to a particular direction. Such a direction can be the corre-
sponding projection direction. We call this set ofk edge cuts a
zoneof cuts and its direction thezone cut direction. We shall
apply these cuts inlog k edge rounds. At the very first edge
roundj = 0, we apply an edge cut throughek/2 in the zone
cut direction. This cut will partition the edges ofP ′ into two
subchains of size at mostbk

2 c. In the next round, we apply two
edge cuts through the two middle edges of these two subchains,
which will result into four subchains. Then in the next round
we apply four similar cuts to the four subchains. We continue
like this until each subchain has only one edge. Clearly, we
needO(log k) edge rounds forP ′.

Lemma 8. After all the face rounds and the corresponding
edge rounds are completed, all edges ofP get an edge cut.

Proof. Let e be an edge that does not get an edge cut. Then
the two adjacent faces ofe are in the same face set. But that is
a contradiction that each face set has only one face.

Analysis We define thebox areaof a face setF as follows.
WhenF contains all faces ofP , its box area isB —the whole
surface area ofB. Zone of cuts through the separating chain of
F partitionsF into F1 andF2 andT into two components, say
T1 andT2, respectively. Then thebox areaof F1 (F2) is the
outer surface area ofT1 (T2), which we denote by byB1 (B2).

Observe that|B1| + |B2| ≤ |B|. Box area of any subsequent
face set is similarly defined. Moreover, two face sets from the
same face round have their box areas disjoint and in any face
round sum of all box area is at most|B|.
Lemma 9. LetP ′m be the separating chain withk edges of an
arbitrary face setFm to which we applyO(log k) edge rounds.
LetBm be the box area ofFm. At each edge roundj, total cost
of 2j cuts isO(|Bm|). Over all log k edge rounds, total cost is
O(|Bm| log n).
Proof. [Sketch only] This proof is similar to that of Lemma 5.
Consider a particular edge roundj. For each cutc the cost of
c is no more than the portion ofBm that is thrown away byc.
Moreover, these cuts are pairwise disjoint. Indeed, they can at
best intersect the cut which is in between them and was applied
in (j − 1)-th round. It implies that the total cost of2j cuts is
at most|Bm|. Sincek ≤ n, the second part of the lemma
follows.

Lemma 10. Let F be the face set consisting of all faces ofP
to which we shall applyO(log n) face rounds. At each face
roundi, total cost of2i zones of cuts isO(|B| log n). Over all
O(log n) face rounds, the total cost isO(C∗ log2 n).
Proof. At each face roundi, we apply2i zones of cuts to2i

face sets. By the previous lemma, for a particular face setFm,
0 ≤ m ≤ 2i, cost of the zone of cuts applied to it is at most

O(|Bm| log n). Since
∑2i

1 |Bm| ≤ |B|, cost of all zone cuts

is
∑2i

1 O(|Bm| log n) = O(|B| log n). Over allO(log n) face
rounds, the total cost isO(|B| log2 n), which by Lemma 6 is
O(C∗ log2 n).

Running time in face roundi involves finding2i separating
chains, each of sizen2i , plus applying a zone of cuts to each of
them. Each separating chain can be found inO( n

2i log n
2i ) time

by Lemma 7. Each cut needs to updateQ, which “can be done”
in O(n) time assuming thatQ is represented by suitable data
structure [3]. It gives that a zone of cuts needsO(n2

2i ) time. So,

in roundi total time isO(2i(n2

2i + n
2i log n

2i )) = O(n2). Over
all O(log n) rounds, it becomesO(n2 log n).
Theorem 1. Given a convex polyhedronP fixed inside a
sphereQ, P can be cut out ofQ by using only guillotine cuts
in O(n3) time with cutting costO(log2 n) times the optimal,
wheren is the number of vertices ofP .
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